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Abstract—With the end of Denard scaling, future systems
will be constrained by power and energy. This will impact
application developers by forcing them to restructure and
optimize their algorithms in terms of these resources. In this
paper, we analyze the impact of different code optimizations on
power, energy, and execution time. Our optimizations include
loop fusion, data structure transformations, global allocation,
and compiler selection. We analyze the static and dynamic
components of power and energy as applied to the processor
chip and memory domains within a system. In addition, our
analysis correlates energy and power changes with performance
events and shows that data motion is highly correlated with
memory power and energy usage and executed instructions
are partially correlated with processor power and energy. Our
results demonstrate key tradeoffs among power, energy, and
execution time for explicit hydrodynamics via a representative
kernel. In particular, we observe that loop fusion and compiler
selection improve all objectives, while global allocation and data
layout transformations present tradeoffs that are objective-
dependent.

Keywords-power and energy tuning; static and dynamic
power; performance analysis.

I. INTRODUCTION

With the power draw of supercomputers increasing with

every generation, power usage is becoming a larger fraction

of the total cost of ownership for major computing centers.

Because of the cost of facility upgrades to increase power

into a computer and as dark silicon becomes a feature

of more computing chips, the amount of power that a

machine can consume will often exceed the amount of

power that can safely be delivered to it. In light of these

changes, it is likely that computer centers will begin to

charge for both node hours and kilowatt hours. With power

monitoring features being added to modern processors such

as Intel’s RAPL [1] and IBM’s Environment Monitoring [2],

application programmers are begining to get the fine grain

measurement tools they need to measure and tune for power

and energy usage.

In recent literature, researchers are investigating the trade-

offs between power, energy, and performance and how

these interact on modern systems [2]–[5]. Other studies are

exploring how auto-tuning techniques can reduce energy

or power consumption [6]. However, most of the literature

focuses on total power and energy usage ignoring that since

the end of Denard scaling the static or leakage power

consumed by computers has increased as a percentage of

overall system power [7]. As we will show, the impact

of program transformations is not always evident when

analyzing overall or total power.

In this paper we focus on analyzing frequently-used

program transformations and their effect on power and

energy. We further break down power and energy usage

into the components of a node that consume it: the memory

and compute units. We start by analyzing total power and

energy but since static power is constant and static energy

is a function of runtime, we focus on the dynamic parts.

Our characterization of dynamic power and energy at a

component level (e.g., memory) allows us to understand

how various program transformations impact power usage

within the system and correlate them to performance through

changes in hardware counter values. Using a full factorial

experimental design of performance tuning of a proxy ap-

plication representative of explicit hydrodynamics codes at

Lawrence Livermore National Laboratory (LULESH), we

make the following contributions:

• We show the effects of code transformations on the

dynamic power and energy used by various system

components.

• We corrolate energy and power changes with perfor-

mance counters and show what is important when

trying to reduce power and energy usage.

• We explore the tradeoffs of tuning LULESH for dy-

namic energy, runtime, and dynamic power. We also

show that changing compilers and loop fusion help with

all objectives and when to use data allocation and data

transformations is objective dependent.

The rest of this paper is organized as follows. Section II

gives an overview of the LULESH proxy application and

the optimizations we analyze. Section III describes our

experimental setup and methodology. Section IV shows how

power and energy are used throughout the system as we

optimize LULESH. We break down values into system

components and static and dynamic quantities. Section V

analyzes how performance optimizations impact dynamic

power and energy usage and the tradeoffs between runtime,

power, and energy. Section VI analyzes our results and

discusses considerations about the profitability of tuning for



power and energy on future systems. Section VII presents an

overview of the related work. Finally, Section VIII contains

conclusions and areas of future work.

II. LULESH

The Livermore Unstructured Lagrange Explicit Shock Hy-

drodynamics (LULESH) mini-app was originally developed

as one of the five challenge problems for the DARPA UHPC

program. It was choosen because explicit hydrodynamics can

consume up to one third of the compute cycles at DOD data

centers. The LULESH mini-app provides a simplified source

code that contains the data access patterns and computational

characteristics of larger hydrodynamics codes. To that end it

uses an unstuctured hexadral mesh with two centerings and

solves the Sedov problem.

Because of its smaller size, it allows for easier and faster

performance tuning experiments on various architectures.

The successful lessons learned can then be applied back

to larger production codes [8]. Also, LULESH has been

ported to a wide variety of programming models to explore

their various performance and productivity advantages [9].

LULESH was recently updated to be more representative of

production codes at LLNL with the addition of multi-region

physics, artificial load imbalance, and various computer

science changes. LULESH is currently being used in the

Department of Energy’s Extreme-Scale Technology Accel-

eration program (FastForward1), the CORAL procurement 2,

and the ExMatEx materials co-design center3.

A. Algorithmic Optimizations

Since this paper focuses on how optimizations impact

performance, power, and energy, we employ performance

optimizations resulting from previous work [8]. These opti-

mizations include loop fusion, data layout transformations,

global allocation, and vectorization. Combined, these opti-

mizations may improve performance up to 3X on conven-

tional microprocessors and up to 10X on accelerators such

as the Intel Xeon Phi. In this paper we focus on loop fusion,

data layout transformations, global allocation optimizations,

and code generation from different compilers.

Loop fusion is an optimization that combines multiple

loops with the same iteration space together. When loops

that access the same arrays are combined, the amount of

data needed to move through the memory hierarchy is re-

duced [10]. However, fusing loops can decrease performance

due to increased register pressure, conflict or capacity misses

in cache or other resource constraints [11]. The version

of LULESH we use for our fused code contains 12 loops

from the original 45. Fusing loops further would result in

transformations that are not possible in the codes modeled

by the proxy application [8].

1https://asc.llnl.gov/fastforward/
2https://asc.llnl.gov/CORAL-benchmarks/
3http://codesign.lanl.gov/projects/exmatex/index.html

Data layout transformations involve changing a ’struct’

of arrays to an array of ’structs’. These transformations

can reduce the amount data moved through the memory

hierarchy by combining acesses to indirectly accessed data

structures [12]. Also, they can reduce the number of streams

being prefetched from memory resulting in more effective

use of hardware stream prefetchers. In LULESH we combine

arrays into 10 different structures. Table I shows the arrays

we combine for these optimizations.

Table I
TRANSFORMED DATA STRUCTURES.

Description Arrays

Coordinates x, y, z
Velocities xd, yd, zd
Accelerations xdd, ydd, zdd
Forces fx, fy, fz
Principle Stains dxx, dyy, dzz
Velocity Gradient delv xi, delv eta, delv zeta
Coordinate Gradient delx xi, delx eta, delx zeta
Temporary Forces fx elem, fy elem, fz elem
Presure and Q p, q
Q Terms ql, qq

Global allocation for LULESH involves moving all the

’malloc’ and ’free’ statements outside of the timestep loop.

Therefore, all temporary variables are allocated once and

then reused without freeing space throughout the program.

Another option that can result in a similar performance gain

is using a thread aware allocation library such as tcmalloc. In

some cases these libraries can result in the same performance

as global allocation without the programming challenges or

memory costs needed to maintain global temporary vari-

ables.

III. EXPERIMENTAL SETUP

Our experiments consist of executing multiple versions of

LULESH, each representing a different set of optimizations,

on an IBM Blue Gene/Q (BG/Q) system capable of power

and energy measurements. For each experiment, we capture

energy, power, execution time, and several performance

counters. In this section, we describe the machine architec-

ture used for our experiments, including the infrastructure to

measure power and energy, and the execution environment

for LULESH.

A. Machine Architecture

A BG/Q system is organized into racks, midplanes, node

boards, and compute nodes [13]. A rack consists of 2

midplanes and each midplane consists of 16 node boards.

The connection between midplanes is achieved via link chips

(BQL) that reside on the node boards. A node board, or

simply board, has 32 compute nodes. Each node has an

ASIC with 18 PowerPC A2 cores (BQC), SDRAM-DDR3

memory, and runs IBM’s Compute Node Kernel (CNK). Six-

teen cores are dedicated for application processing, one for



the operating system, and one unused for redundancy. Each

core is a 4-way SMT unit and runs at 1.6 GHz. Network

communication on this system is achieved through high-

speed serial (HSS) cores on the BQC and BQL components.

B. Power Infrastructure

BG/Q systems are capable of measuring power and energy

at a node board granularity [2]. Each board has two direct

current amperage (DCA) modules that produce high-voltage

power lines, which are translated into low power lines or

domains by voltage transformation modules. This organiza-

tion results in a total of seven power domains as shown in

Table II. Domain one, for example, includes the L2 cache,

the processor units, integrated memory controllers, and the

chip-to-chip communication logic. Throughout the rest of

the paper we use the named alias (e.g., core and memory)

to refer to the power domains.

Table II
BG/Q POWER DOMAINS PER NODE BOARD.

Description Alias

Domain 1 BQC core logic power Core

Domain 2 SDRAM-DDR3, BQC DDR3 I/O Memory

Domain 3 Optical module power

Network
Domain 4 Optical module power, PCI Express
Domain 6 BQC and BQL HSS I/O
Domain 8 BQL core power

Domain 7 BQC core array power

Each DCA has a microprocessor unit (MPU) that mea-

sures current and voltage for each domain. Then, an FPGA

on the node board reads the measured data from the MPU

to its on-chip memory. Finally, the compute nodes can read

data from the FPGA via Environment Monitoring (EnvMon)

serial bus lines. User-level programs can access the power

information through the EMON API [14], [15].

The default BG/Q power infrastructure provides access to

instantaneous power measurements at 300 ms intervals. This

interval may be too coarse to capture power phases of many

applications and, thus, IBM refined its power monitoring

on BG/Q to allow measurements of current and voltage

at fine-grain intervals that range between 90 and 500 us

depending on the number of domains being measured. The

new infrastructure requires changes to the DCAs and FPGA

images of a node board and provides a new API called

EMON2 [2]. All of our investigations in this paper make

use of this new infrastructure.

Through the EMON2 API a user application is able to

retrieve cumulative energy consumption at a given point in

time. With two snapshots, the EMON2 library computes the

energy difference and the average power consumption for

the given interval. Because of the long latency to retrieve a

power snapshot from the FPGA [2], our experiments capture

power and energy consumption every 10 ms. We collect data

for all seven power domains.

To capture power and energy measurements in tandem

with performance counters, we employ the IBM BGQT

library [2]. This library leverages the EMON2 and the

Blue Gene performance monitoring (BGPM) application

programming interfaces. BGQT links to an application dur-

ing compilation and, at runtime, launches a tracer thread

per board to capture power snapshots every time interval

(10 ms). Since the latency of collecting a power snapshot

can be large, and thus affect application performance, we

dedicate one core for the tracing thread.

C. Experimental Methodology

To study individual optimizations and their combined

effect on power, energy, and performance, we developed 16

versions of LULESH representing all optimization combina-

tions (see Table III). We compare the different optimizations

relative to the unoptimized version of LULESH 1.0 built

with the GNU compiler (NoOpt).

Table III
LULESH OPTIMIZATIONS (24 VERSIONS).

ac Global allocation
dl Data structure layout transformations
fu Loop fusion
xl xlc++ compiler with -O3 -qhot -qstrict -qsmp=omp

NoOpt g++ compiler with -O3 -fopenmp

We ran each version of LULESH on 1 node board

(32 nodes) and 60 OpenMP threads per node. We used a

problem size of 1203 per node for 130 iterations and started

measurements after the application’s initialization phase.

To understand the static and dynamic power consumption

of LULESH, we executed a single thread benchmark that

performs no work. The power consumed by this benchmark

(per unit of time) represents the static power. To calculate the

dynamic power of a LULESH instance we subtracting this

static power measurement from the total power consumed

by LULESH.

IV. THE EFFECTS OF OPTIMIZATION ON SYSTEM POWER

AND ENERGY USAGE

To understand the effects of optimization on power and

energy usage one must understand how power and energy

are used throughout the system. In Figure 1 we present a

breakdown of the power (an energy breakdown would look

identical) used by the unoptimized version of LULESH.

Power is broken down by domain including core, memory,

and other. The domain named other includes the network

domain and the BQC core array (see Table II). The net-

work and BQC core array do not vary significantly as we

optimize LULESH so we ignore them for the remainder

of the paper. Network links, for example, are always on



consuming roughly the same power regardless of use. Then

within each domain we show the dynamic and static power

consumed. From Figure 1 we observe that static power is the

dominant consumer of system power on BG/Q. In addition,

the memory subsystem has a larger relative power change

when active, although it consumes a smaller portion of the

total overall power.
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Figure 1. Node board power consumed by the NoOpt configuration
itemized by component. This graph shows, for example, that 45% of the
total power is static core power, while 17% of the total power is memory
power.

To tune codes for power, optimizations must save a

significant amount of it to tradeoff these savings with

runtime. Figure 2 shows how energy and power change

with respect to the optimizations used and runtime. This

figure demonstrates that energy use is highly correlated with

runtime. Therefore, tuning for runtime and tuning for energy

present nearly identical tradeoffs. Also, total power usage

never changes by more than 5% so tuning for power has a

marginal impact.

However, when we consider the dynamic components

of energy and power, optimizations have a greater impact.

Figure 3 shows that although a correlation between energy

and runtime still exists, the effects are less pronounced.

Figure 3 also shows that power variations from performance

tuning are significantly greater when static power is re-

moved. Therefore, by removing static power and/or energy

from consideration we observe the impact of tuning on what

a programmer can control.

The final components we consider to understand tuning

tradeoffs on a system are the changes in power and energy

at a subsystem level, i.e., the memory and core domains

(see Figures 4 and 5). In more than half the code versions

in Figure 4, power from one component (most frequently

memory power) decreases relative to the untuned code while

power from the other component increases. In these cases,
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Figure 2. Execution time, power, and energy for each optimization.
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Figure 3. Execution time, dynamic energy, and dynamic power for each
optimization.

a tradeoff is clear: improvements in execution time and

memory power come at the expense of core power.

Figure 5 shows that all optimized versions except one

result in less core and memory dynamic energy usage. In

most cases memory energy is reduced more than core energy.

In particular, memory energy is reduced the most in the code

versions that have the shortest runtime and lowest overall

energy usage.

Summarizing, understanding the effects of optimizations

on power, energy, and execution time requires a detailed
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Figure 4. Execution time and dynamic power broken down by component
for each optimization.
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Figure 5. Execution time and dynamic energy broken down by component
for each optimization.

analysis of various system levels including static and dy-

namic aspects as well as subsystem components such as the

processor and memory.

V. WHICH OPTIMIZATIONS IMPACT DYNAMIC POWER

AND ENERGY USAGE AND WHY

In this section we investigate why code transformations

impact dynamic power and energy usage by characteriz-

ing their impact at a subsystem level (i.e., processor and

memory). We also correlate power and energy changes to

performance events.

A. Power

Figure 6 compares dynamic memory power with memory

bandwidth. We calculated memory bandwidth as the number

of bytes moved to and from main memory per unit of time.

This information is based on hardware events that count the

number of cache line reads and writes to main memory.

Figure 6 shows that dynamic memory power and bandwidth

utilization have a nearly one to one relationship to each

other. Therefore, reducing the rate at which bytes are moved

directly decreases dynamic memory power consumption. For

core power there is no single factor that correlates as well

as for memory. Figure 7, however, shows that IPC and

core power are partially correlated. Since the core domain

contains the functional units, processor caches, and prefetch

caches, it is not surprising that no single counter accounts

for the entire variation.

a
c

a
c
+

d
l

a
c
+

d
l+

x
l

a
c
+

x
l

d
l

d
l+

x
l

fu

fu
+

a
c

fu
+

a
c
+

d
l

fu
+

a
c
+

d
l+

x
l

fu
+

a
c
+

x
l

fu
+

d
l

fu
+

d
l+

x
l

fu
+

x
l

x
l

N
o
rm

a
liz

e
d
 t
o
 N

o
O

p
t

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

1
.4

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

RunTime

MemBW

DynPowMem

NoOpt

Figure 6. Memory bandwidth and dynamic memory power correlation.

Loop Fusion: Figures 6 and 7 show that all the codes

with dynamic memory power usage less than or equal to

the unoptimized code have the loop fusion optimization

applied. However, fusion increases the power used by the

core domain as shown by all pairs of optimized versions of

LULESH that are identical other than whether loop fusion

is applied, for example, xl and xl+fu. In all cases the

version with loop fusion uses more core power. Loop fusion

combines multiple accesses to the same data structure into a

single loop reducing the number of times data is brought in

from main memory. The result is fewer memory-bound loops

and less data traffic per unit time, which results in lower

dynamic memory power usage as seen in Figure 6. However,
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Figure 7. Instructions-per-cycle (IPC) and dynamic core power correlation.

the code becomes more compute intense, which results in a

higher IPC and core cache usage shown in Figure 7.

XL Compiler: When comparing two codes that have

identical optimizations except one was compiled with the

XL compiler and one with GNU, for example, dl and dl+xl,

we see in Figures 6 and 7 that dynamic memory power

increases while dynamic core power and runtime decreases.

The changes are related to the quality of code produced as

opposed to changes in data motion because XL produces

fewer integer instructions resulting in a lower IPC, core

power, and runtime. The resulting code however, moves

the same amount of data in less time resulting in a higher

memory bandwidth utilization.

Data Layout and Allocation: In most cases the data

layout and allocation optimizations increase memory power

usage slightly, though in some combinations such as adding

data layouts to allocation and the XL compiler (ac+dl+xl vs.

ac+xl in Figure 4), the increase is more pronounced. Also,

adding allocation to fusion (ac+fu vs. fu) reduces memory

power slightly, which might imply that the arrays that were

removed when fused are the ones that increase power usage

when allocation is applied. Data layout and allocation also

increase core power though the impact is never more than

10%, for example, ac vs. NoOpt and fu+ac vs. fu+ac+dl in

Figure 4.

Overall, loop fusion is the most important optimization

to reduce dynamic memory power consumption, while only

the XL compiler reduces dynamic core power usage.

B. Energy

Figure 8 shows that dynamic memory energy and total

data motion to and from memory are strongly correlated,

with differences never exceeding 5%. Therefore, as with

dynamic power the main way to reduce dynamic energy

usage is to reduce data movement between memory and the

processor. Figure 9 shows that dynamic core energy and

the number of instructions executed are correlated. The gap

is never larger than 20% and from the data we collected,

instructions or subsets of instructions (e.g., floating-point)

are the only clear counter that is directly proportional to

dynamic core energy. Other factors, such as data motion

from caches to the processor have no clear corrolations, but

probably account for some or all of the difference.
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Figure 8. Memory accesses and dynamic memory energy correlation.

Loop Fusion: There is a group of eight codes in

Figure 5 with the lowest memory energy use (60% or

less than the baseline) that all employ the loop fusion

(fu) optimization. These codes also move the fewest bytes

from memory as shown in Figure 8. Loop fusion also

significantly decreases dynamic core energy by up to 20%

(see fu in Figure 9) because of fewer instructions executed,

in particular loads and stores.

Allocation: Figure 8 shows that the set of eight codes

implementing loop fusion consume the least amount of

memory energy. Within these codes, the four with allocation

applied (fu+ac, fu+ac+{dl,dl+xl,xl}), use the least amount of

energy. Also, the codes with the least memory energy con-

sumption that do not use loop fusion (ac, ac+{dl,dl+xl,xl}
at about 80% the memory energy of the unoptimized code)

all implement the allocation optimization. Thus, allocation

is the second best optimization (after loop fusion) to reduce

dynamic memory energy in LULESH. Note, however, that

when both fusion and allocation are combined the effects are

not additive and the combined code does not quite achieve

the sum of the individual gains. Allocation also reduces core
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Figure 9. Number of instructions and dynamic core energy correlation.

dynamic energy usage by about 10% (e.g., ac in Figure 9).

As with memory energy usage, the impact is smaller when

combined with loop fusion since both remove the allocation

of some arrays.

XL and Data Layouts: The XL compiler slightly re-

duces memory energy consumption (e.g., ac+dl vs. ac+dl+xl

in Figure 8) while significantly decreasing core energy (e.g.,

xl in Figure 9). In fact the eight codes using the XL

compiler are also the codes that use the least amount of

dynamic core energy. Core energy is decreased due to code

with significantly fewer instructions. Data motion from main

memory (though loads from cache are reduced), however,

is not changed. Data layout optimizations by themselves

(xl vs. dl+xl in Figure 5) increase memory energy slightly

though when combined with loop fusion (fu+xl vs. fu+xl+dl)

decrease dynamic memory energy slightly. Data layout trans-

formations also have a negligible impact on dynamic core

energy use because they change how data is accessed more

than the number of instructions used to access that data.

Overall, loop fusion and allocation are the most important

optimizations to reduce memory energy usage. For core

energy, using the XL compiler is most important, while loop

fusion also has a significant impact on energy consumption.

C. Power, Energy, and Runtime Tradeoffs

Figure 3 shows that loop fusion (fu), using the XL

compiler (xl), and the combination of both (fu+xl) reduce

both dynamic power and energy usage, while also reducing

runtime. Adding data allocation (ac) to those optimizations

results in no significant changes in power usage, while

reducing runtime and energy usage. However, all other

optimization combinations, other than just applying data

layouts, result in higher power and lower energy usage.

When tuning for runtime and (dynamic or total) energy

usage, then applying all optimizations is best, at about a 10%

power cost. Not performing allocation (fu+dl+xl) results

in the second best runtime and energy usage (third best

dynamic) when compared to the unoptimized code at a 5%

increase in power. However, if there is a power cap equal to

the baseline then not applying the data layout optimizations

(fu+xl+ac) results in the third best runtime and ties for the

second best dynamic energy (third best static) usage. Finally,

when tuning for power then applying loop fusion and using

the XL compiler results in the fourth best version in terms

of energy and execution time.

There are tensions in trading off performance, power

and energy on BG/Q. However, for LULESH we should

always fuse loops and use the XL complier. After those two

optimizations, the best choices depend on whether there is

a power cap. With a power cap the best code will depend

on how strict the power limit is and whether it uniformly

affects the whole program.

VI. DISCUSSION

In this paper we showed that tuning LULESH for energy

on a BG/Q system is nearly identical to tuning for runtime.

We also discovered that while tuning changes total power

consumption, the impact is small. Therefore, we studied

changes in dynamic power and energy consumption and

observed a significant impact as a result of tuning. Fur-

thermore, measuring the core and memory contributions

separately provided key insights as to what optimizations

are effective and why according to the significantly different

amount of power consumed by each component. In addition,

we correlated the changes in power and energy consumption

to hardware counters and presented various runtime, energy,

and power optimization tradeoffs.

There are a few caveats of analyzing only dynamic energy

and power. If the power balance between components (e.g.,

memory and processor) stays the same in future systems and

static power and energy are not reduced relative to dynamic

power and energy, then tuning code for power will have

marginal effects. And, tuning for energy will be similar to

minimizing runtime. Because of the expected increase in

leakage as voltages are reduced [7], system architectural

changes may be necessary to allow effective tuning via pro-

gram transformations. Some of these technologies, such as

dynamic voltage and frequency scaling, are already features

of current chips, while others, such as clock gating, are

expected to appear in the near future.

Even if none of these technologies prove fruitful, we

expect that the memory subsystem will consume a greater

fraction of a machine’s total power resulting in a greater

amount of dynamic power. If systems were to evolve in this

manner then there will be more oppertunity to tune for power

and energy on them based on our expirimental data because



memory energy and power had a higher dynamic component.

However, with main memory bandwidth increasing slower

than floating-point capabilities, future systems will be more

likely to run the memory system at its highest power state

more frequently. For memory-bound HPC codes, this means

that turning off cores when an application is in a memory-

bound phase and reducing the memory bus speed when it is

in a compute-bound phase may result in significant power

and energy savings.

VII. RELATED WORK

We classify recent related work in the following areas:

modeling power and energy in HPC; and analyzing perfor-

mance, power, and energy tradeoffs. First, modeling is a

useful vehicle to approximate power, energy, and tempera-

ture on systems that lack direct measurement capabilities.

These models employ performance information to estimate

the desired parameters [5], [16]. In addition, modeling is

essential to predict power and energy on future systems. A

few examples include modeling to estimate leakage energy

on a cache hierarchy [7], modeling power and energy at finer

granularities in terms of space and time [3], and modeling in-

dividual system components [17], [18]. Our work leverages

existing power monitoring capabilities on BG/Q [2] and,

similar to previous work, identifies the performance events

that capture the driving force behind power and energy

consumption on LULESH.

Second, a body of work described tradeoffs between

power, energy, and execution time especially for compiler

transformations. Wang et al. [6] used a polyhedral opti-

mizer to generate multiple program variants with different

optimizations including loop fusion, unrolling, tiling, and

vectorization. Their results show a strong correlation be-

tween execution time and energy consumption. Balaprakash

et al. [4] presents a multi-objective optimization framework

to understand the trade-offs of performance, power, and

energy. This formulation of objective functions can be used

in auto-tuning environments with competing objectives. The

authors demonstrated empirically that these tradeoffs exist.

Tiwari et al. [5] uses compiler optimizations (loop tiling

and unrolling) to validate their power and energy models of

processor and memory components. Deshpande et al. [7]

showed that certain compiler optimizations have a small

effect on cache leakage.

This related work serves as a basis for analyzing why

certain program transformations tradeoff power and energy,

which is the focus of our work. Our contributions include

a detailed analysis of power and energy consumption of

several optimizations that have been successfully applied

to explicit hydrodynamic codes in terms of performance.

Unlike previous work, we provide insights that explain why

a particular optimization tradeoffs power and energy the

way it does. Our answers are based on a distinct analysis

that considers static and dynamic elements separately at a

subsystem-level granularity.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we show that when tuning for power and

energy the impact of program transformations is limited to

the dynamic components of power and energy. We also show

that the changes in dynamic power and energy usage for

various system components is correlated with data motion

and instructions executed. Of the optimizations analyzed,

loop fusion and using the XL compiler improved all three

objectives (power, energy, and execution time). However,

data layout transformations and global allocations present

tradeoffs in optimizing for the same three objectives.

Many HPC applications have multiple phases with differ-

ent characteristics. In future work, we plan on characterizing

program transformation optimizations enabled by changes

in power states and by gating off parts of a chip without

significantly decreasing performance. This work include

analyzing compute and memory bound sections of LULESH

and other representative HPC kernels and determining how

fast power gating of memory and/or processor is needed

between code regions to allow power savings at a marginal

performance cost. We expect that this analysis of program

transformations at a code-region granularity will allow more

effective tuning by leveraging low power states and gating

off technologies.
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